skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rakovan, John F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Fluoride is one of the most consumed pharmaceuticals in the world, and its facility in preventing dental caries is recognized as one of the top 10 public health achievements of the 20th century. Although hydroxylapatite is often used as an analog of dental enamel, the details of the substitution of F for OH in the apatite anion column are not well known. Using new synthesis techniques, this study extends the structure work on P63/m apatites along the middle portion of the F-OH apatite join to compositions near the composition of fluoridated human teeth. The first F substituent in hydroxylapatite, near fluoridated dental enamel compositions, is dramatically underbonded by the surrounding Ca2 atoms (0.72 vu) in a hydroxylapatite matrix. However, the hydroxyl hydrogen is able to contribute 0.20 or 0.10 vu in hydrogen bonding, depending on whether the substitution creates a reversal site in the anion column; this hydrogen bonding alleviates the bonding requirements of the substituent F. As F concentrations increase along the join, the average hydroxyl contributes increasing amounts of hydrogen bonding to the F column anions; to mitigate the loss of its hydrogen bonding, the hydroxyl oxygen migrates toward the adjacent mirror plane that contains the bonded Ca2 atoms, and the triangle of bonded Ca2 ions concomitantly contracts. These two mechanisms increase bonding to the column hydroxyl oxygen from the adjoining Ca2 atoms to balance the loss of hydrogen bonding that stabilizes the substituent F column anion and the increasing concentration of underbonded F. 
    more » « less
  2. Abstract Hydroxylpyromorphite, Pb5(PO4)3(OH), has been documented in the literature as a synthetic and naturally occurring phase for some time but has not previously been formally described as a mineral. It is fully described here for the first time using crystals collected underground in the Copps mine, Gogebic County, Michigan. Hydroxylpyromorphite occurs as aggregates of randomly oriented hexagonal prisms, primarily between about 20–35 μm in length and 6–10 μm in diameter. The mineral is colorless and translucent with vitreous luster and white streak. The Mohs hardness is ~3½–4; the tenacity is brittle, the fracture is irregular, and indistinct cleavage was observed on {001}. Electron microprobe analyses provided the empirical formula Pb4.97(PO4)3(OH0.69F0.33Cl0.06)Σ1.08. The calculated density using the measured composition is 7.32 g/cm3. Powder X-ray diffraction data for the type material is compared to data previously reported for hydroxylpyromorphite from the talc mine at Rabenwald, Austria, and from Whytes Cleuch, Wanlockhead, Scotland. Hydroxylpyromorphite is hexagonal, P63/m, at 100 K, a = 9.7872(14), c = 7.3070(10) Å, V = 606.16(19) Å3, and Z = 2. The structure [R1 = 0.0181 for 494 F>4σ(F) reflections] reveals that hydroxylpyromorphite adopts a column anion arrangement distinct from other members of the apatite supergroup due to the presence of fluorine and steric constraints imposed by stereoactive lone-pair electrons of Pb2+ cations. The F– anion sites are displaced slightly from hydroxyl oxygen anions, which allows for stronger hydrogen-bonding interactions that may in turn stabilize the observed column-anion arrangement and overall structure. Our modern characterization of hydroxylpyromorphite provides deeper understanding to a mineral useful for remediation of lead-contaminated water. 
    more » « less